Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway.
نویسندگان
چکیده
We recently reported that soluble 60-kDa heat shock protein (HSP60) can directly activate T cells via TLR2 signaling to enhance their Th2 response. In this study we investigated whether HSP60 might also activate B cells by an innate signaling pathway. We found that human HSP60 (but not the Escherichia coli GroEL or the Mycobacterial HSP65 molecules) induced naive mouse B cells to proliferate and to secrete IL-10 and IL-6. In addition, the HSP60-treated B cells up-regulated their expression of MHC class II and accessory molecules CD69, CD40, and B7-2. We tested the functional ability of HSP60-treated B cells to activate an allogeneic T cell response and found enhanced secretion of both IL-10 and IFN-gamma by the responding T cells. The effects of HSP60 were found to be largely dependent on TLR4 and MyD88 signaling; B cells from TLR4-mutant mice or from MyD88 knockout mice showed decreased responses to HSP60. Care was taken to rule out contamination of the HSP60 with LPS as a causative factor. These findings add B cells to the complex web of interactions by which HSP60 can regulate immune responses.
منابع مشابه
Heat shock protein 60, via MyD88 innate signaling, protects B cells from apoptosis, spontaneous and induced.
We recently reported that heat shock protein 60 (HSP60) via TLR4 signaling activates B cells and induces them to proliferate and secrete IL-10. We now report that HSP60 inhibits mouse B cell apoptosis, spontaneous or induced by dexamethasone or anti-IgM activation. Unlike HSP60 enhancement of B cell proliferation and IL-10 secretion, TLR4 signaling was not required for the inhibition of apoptos...
متن کاملMyocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4.
Innate immune response after transient ischemia is the most common cause of myocardial inflammation and may contribute to injury, yet the detailed signaling mechanisms leading to such a response are not well understood. Herein we tested the hypothesis that myocardial ischemia activates interleukin receptor-associated kinase-1 (IRAK-1), a kinase critical for the innate immune signaling such as t...
متن کاملExtracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes.
AIMS The molecular events leading from cardiomyocyte ischaemia to inflammatory cytokine production are not well understood. We previously found that heat shock protein 60 (HSP60) appeared in extracellular space after cardiomyocyte ischaemia. This study examined the activation and regulation of toll-like receptors (TLRs) by HSP60 in cardiomyocytes. METHODS AND RESULTS Cytokine production and T...
متن کاملChlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway.
Active inflammation and NF-kappaB activation contribute fundamentally to atherogenesis and plaque disruption. Accumulating evidence has implicated specific infectious agents including Chlamydia pneumoniae in the progression of atherogenesis. Chlamydial heat shock protein 60 (cHSP60) has been implicated in the induction of deleterious immune responses in human chlamydial infections and has been ...
متن کاملHSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway.
Human heat-shock protein (HSP)70 activates innate immune cells and hence requires no additional adjuvants to render bound peptides immunogenic. Here we tested the assumption that endogenous HSP70 activates the Toll/IL-1 receptor signal pathway similar to HSP60 and pathogen-derived molecular patterns. We show that HSP70 induces interleukin-12 (IL-12) and endothelial cell-leukocyte adhesion molec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 175 6 شماره
صفحات -
تاریخ انتشار 2005